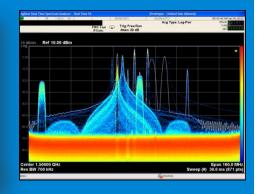


Семинар Agilent: Радиочастотное и микроволновое оборудование

Stewart Forsyth

Microwave Communications Division

Программа доклада:


- Развитие анализаторов спектра среднего класса
 - Улучшения фазового шума для ЕХА / МХА
 - Расширенная полоса для МХА
 - Анализ спектра в реальном времени на базе МХА
 - Улучшения скоростных параметров ЕХА / МХА/ РХА
- Обновление приложений для анализаторов спектра
 - N9079A измерения коэффициента шума
 - 89600B обновление VSA до версий 17.0 и 17.2
- N9322C базовый настольный анализатор спектра
- N9038A МХЕ обновление возможностей приемника ЭМП
- Расширение в генерации и анализе сигналов до микроволнового диапазона 1 ТГц
- Модернизация навигационных систем ГЛОНАСС
- Новые микроволновые генераторы N5173B и N5183B

Развитие анализаторов спектра среднего класса

Управление эволюционным развитием **N9030A PXA**

Ускорение беспроводных решений **N9020A MXA**

Баланс производительности **N9010A EXA**

EXA

Мастерство в основах N9000A CXA

Троизводительность/Опции

CXA до 26.5 GHz CXA

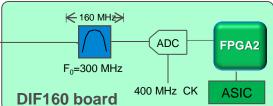
- Предусил. до 26.5 GHz
- ~ФШ лучше на 4 дБ
- быстрое свипирование

MXA

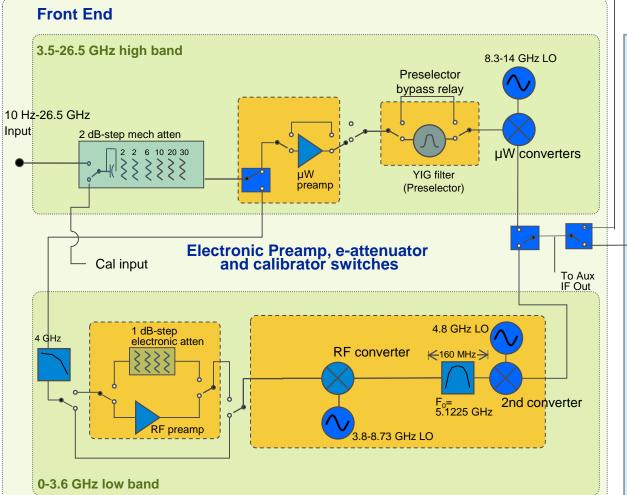
MXA 💈

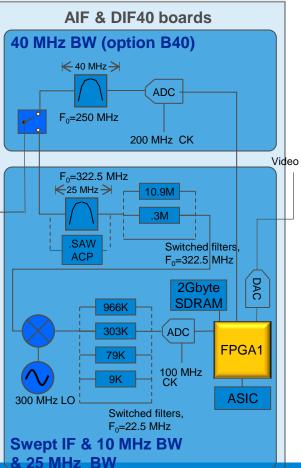
- RTSA
- 85/125/160 МГц полоса анализа
- ~ ФШ лучше на 8 дБ
- быстрое свипирование

Цена



- 85/160 МНz полоса
- быстр. свипирование




Упрощенная блок-схема входного каскада МХА

Опции B85 (85 MHz), B1A (125 MHz), or B1X (160 MHz). FPGA2 располагается на плате с RTSA

160/125/85 MHz BW

Требование увеличения скорости обмена данными

Тенденции пром-ти

> Усложнить схему передачи данных

Пример решения

От 1 несущей ко многим поднесущим (как OFDM)

Требования заказчика

Лучше ФШ для проверки ортогональности Как задейстован НОВЫЙ МХА

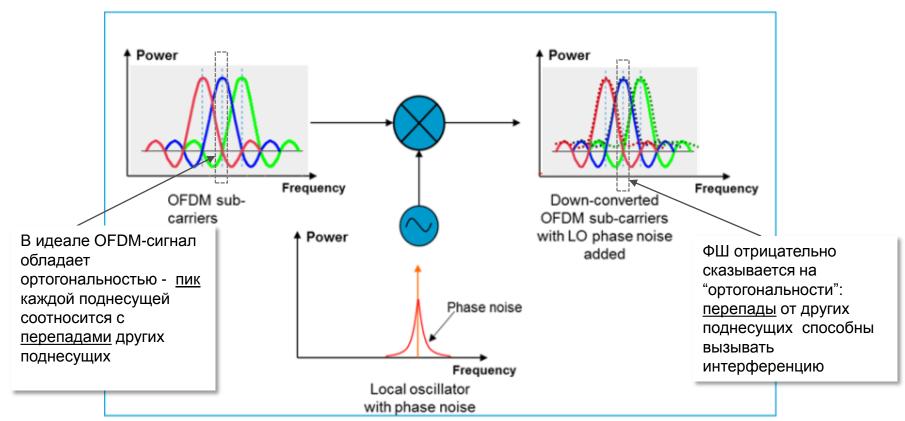
Лучшие в классе ФШ - лучшая производительность

Повысить сложность цифровой модуляции

От малых к высоким порядкам (64-QAM - 256 QAM)

Снижение EVM для минимизации BER Лучшие в классе ФШ - лучшая производительность

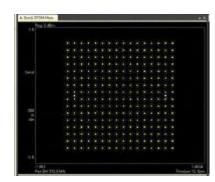
Расширить полосы пропускания канала


От 20, 40 МГц до 85, 160 МГц Требуются инструменты с расширенной полосой

Лучшая в классе полоса анализа до частот 26,5 ГГц

Почему так важен уровень фазовых шумов?

Пример с OFDM (Orthogonal Frequency Divisional Multiplexing)



Лучший фазовый шум – минимизация EVM

Пример: 16-QAM модуляция

- ФШ вносят вклад при оценке EVM
- Модуляции высокого порядка (напр. 256 QAM) требуют снижения фазовых шумов
- Снижение фазовых шумов НОВОГО МХА позволяет разработчикам получить лучший EVM для беспроводных устройств

ФШ устройства

EVM

снижают эффективный

256 QAM модуляция оставляет меньший интервал для EVM

Улучшение фазовых шумов НОВОГО МХА

N9020A MXA

• Модернизированная сборка гетеродина

- Наибольшее снижение ФШ на ближних отстройках
 - Улучшение на 11 дБ
- Идентификатор: N9020A-EP2
 - Станд. опция новых приборов
 - ПО ≥ А.13 требование
 - Не может быть апгрейдом
 - Рекомендуется замена

MXA -	сравнение	фIII с	прешественником
	CDADUCUNG	THE C	прещественником

Отстройка	новый*	Было	Улучш.
100 Hz	-91 dBc/Hz	-84 dBc/Hz	7 dB
1 kHz	-112 dBc/Hz (nom.)	-101 dBc/Hz (nom.)	11 dB
10 kHz	-113 dBc/Hz	-103 dBc/Hz	10 dB
100 kHz	-116 dBc/Hz	-115 dBc/Hz	1 dB
1 MHz	-135 dBc/Hz	-135 dBc/Hz	0 dB
10 MHz	-148 dBc/Hz (nom.)	-148 dBc/Hz (nom.)	0 dB

Насколько улучшили ФШ по сравнению с предшествующим МХА?

МХА (НОВЫЙ)

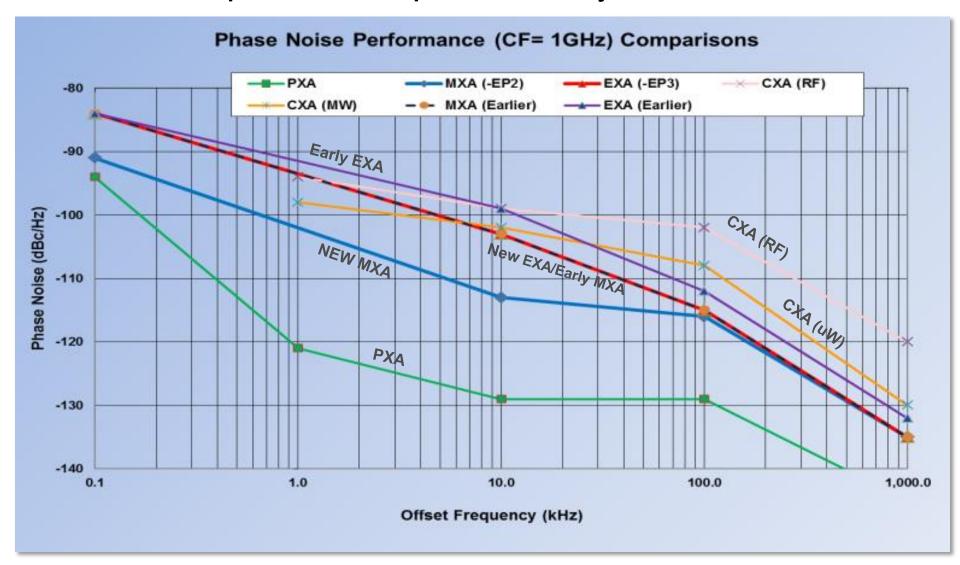
МХА (предшеств.)

Наибольшее снижение ФШ на ближних отстройках

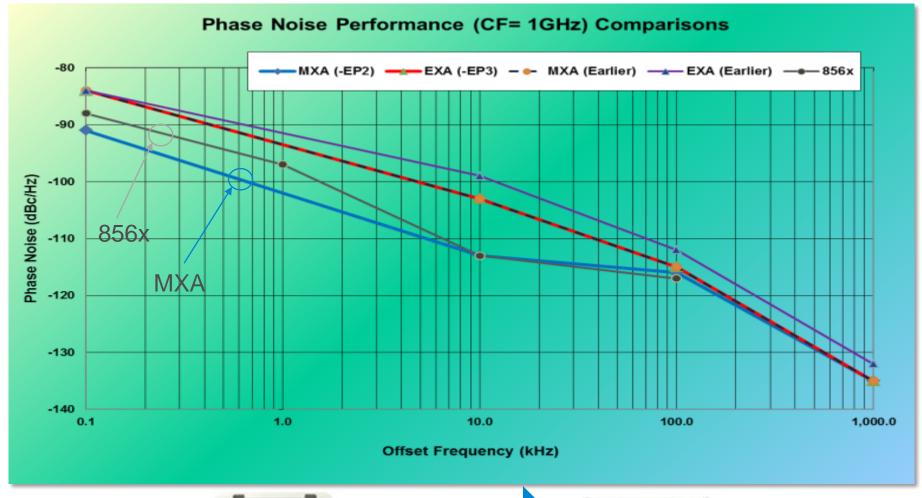
- Измеренные показатели: ~10 дБ или большее улучшение
- Полезно заказчикам, специализирующимся на LTE (OFDM) и радарах

Улучшенные фазовые шумы ЕХА

N9010A EXA


- Аппаратная замена + оптимизац. кода FPGA
- Наибольшее снижение ФШ на дальних отстройках
 - ~улучшение ФШ на 4 дБ
- Идентификатор: N9010A-EP3
 - Станд. опция новых приборов
 - ПО ≥ А.13 требование
 - Не может быть апгрейдом
 - Рекомендуется замена

ЕХА - сравнение ФШ с прешественником


Отстройка	НОВЫЙ ЕХА (-EP3)*	БЫЛО (не -ЕР3)	Улучш.
100 Hz	-84 dBc/Hz	-84 dBc/Hz	0 dB
1 kHz	-98 dBc/Hz (nom.)	-98 dBc/Hz (nom.)	0 dB
10 kHz	-103 dBc/Hz	-99 dBc/Hz	4 dB
100 kHz	-115 dBc/Hz	-112 dBc/Hz	3 dB
1 MHz	-135 dBc/Hz	-132 dBc/Hz	3 dB
10 MHz	-148 dBc/Hz (nom.)	-143 dBc/Hz (nom.)	5 dB

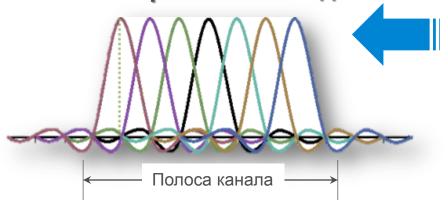
X-Series – сравнение фазовых шумов

По фазовым шумам новый МХА лучше 856-х серий!

856х (RF/uM): оконч. поддержки Сент 1, 2014)

Замена

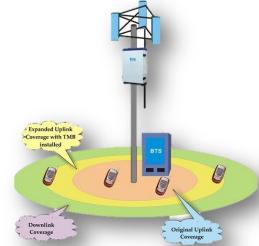
N9020A MXA


Максимальный динамический диапазон для М/ЕХА Улучшение по спецификациям для ТОІ

- Улучшение ТОІ для МХА в ВЧ-полосе (13.6-26.5 GHz) на ~5 dB
 - Ot +10 dBm (+14 dBm тип.) до +15 dBm (+18 dBm тип.)
- Повышена ТОІ в нескольких частотных диапазонах
 - Совместно с улучшением ФШ в N9010A
 - Сравнение ТОІ нового ЕХА и прешествующего ЕХА:

Частота	Новый EXA, тип. TOI	Было, тип. TOI	Улучшение
100 - 400 MHz	+17 dBm	+14 dBm	3 dB
0.4 - 1.7 GHz	+18 dBm	+15 dBm	3 dB
1.7 - 7.0 GHz	+18 dBm	+17 dBm	1 dB
7.0 - 13.6 GHz	+18 dBm	+15 dBm	3 dB
13.6 - 26.5 GHz	+16 dBm	+14 dBm	2 dB

Для чего требуется расширение полосы анализа?


Повысьте скорость обмена данными!

- Шире полоса больше поднесущих
- Опции полосы вкл. в себя:
 - 20 MHz
 - 40 MHz (or 20+20 MHz)
 - 80 MHz (or 40+40 MHz)
 - 160 MHz

- Многоканальный усилитель мощности
- Большее число каналов треубет большей занимаемой полосы

Полоса анализа 160 МГц в новом МХА позволяет удовлетворить растущие требования

Полоса анализа МХА увеличена до 160 МГц

10 MHz (Std.) 25 MHz (Std.)

40 MHz (Opt B40) 85 MHz (Opt B85) 125 MHz (Opt B1A) 160 MHz (Opt B1X)

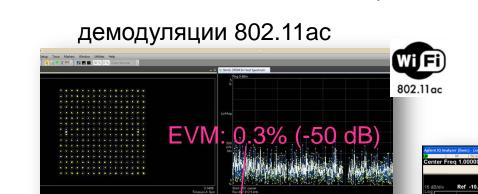
Готово примению с новыми стандартами: 802.11ac, LTE-Advanced

Превосходная производительность на ПЧ по частотам до 26,5 ГГц

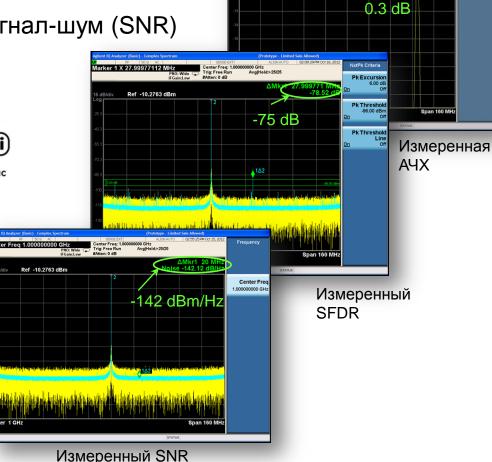
Поддерживается в следующих режимах:

- 89600 VSA и измерительным приложением N9064A VXA
- Другими приложениями для анализа бсепроводных сетей (как N9077A WLAN)
- Анализатором спектра в реальном времени

Расширяемая опция для существующих МХА

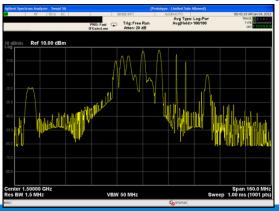

Не совместима с опцией аналоговых внешних IQ-входов (опция BBA)

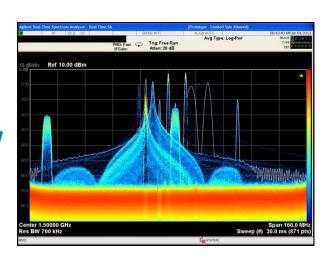
Превосходные характеристики тракта ПЧ до 26.5 ГГц


Плоская АЧХ ПЧ в полосе 160 МГц

Исключительно низкий EVM при

- Широкий диапазон без искажений (SFDR)
- Высокое значение соотношения сигнал-шум (SNR)


Измеренный EVM для 802.11ас демод.: 0.3% (w/ equalizer анализ преамбулы + данные)


Зачем использовать анализ в реальном времени (RTSA)?

- Развитие технологий сотовой связи и беспроводных сетей ставит новые задачи заказчикам
- RTSA сможет лучше анализировать следующие сигналы
 - Спектры, варьируемые со временем
 - Переключение между стандартами
 - Передачи вспышек сигналов
 - Переключение частот
 - Невыраженная интерференция
 - Кратковременные сигналы

Традиционный анализ спектра

В RTSA содержится значительно больше информации! Анализ спектра в реальном времени на МХА

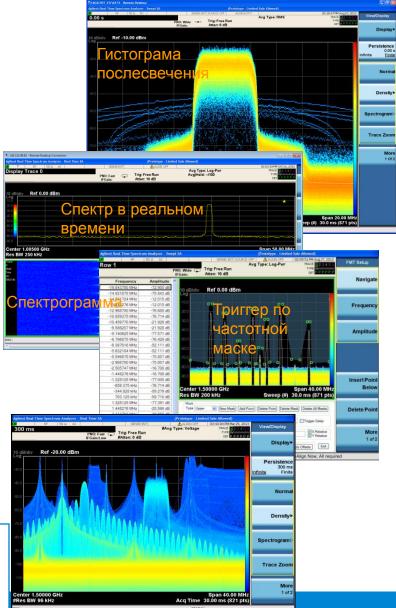
Увидеть, захватить и изучить самые неуловимые сигналы

Ключевые особенности:

Обнаружение сигналов длительностью 3,57 мкс со 100% POI

• Используйте триггер по частотной маске (FMT), чтобы анализировать и записывать редкие сигналы - *стандарт*

Сканирование в широкой полосе 160-МГц реального времени


- RTSA откр. по ключу на МХА с полосой от 85 МГц
- 30-дневная бесплатная лицензия

Устранена необходимость специализированного инструмента за счет RTSA

Требуется опция широкополосного анализа (свыше 85 МГц)

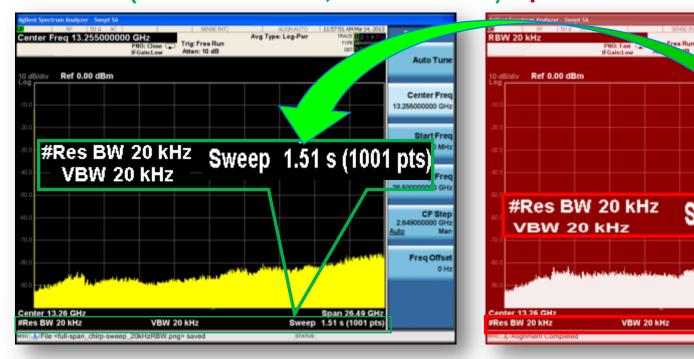
Живой пример окружения с CW, импульсами и сигналами CDMA

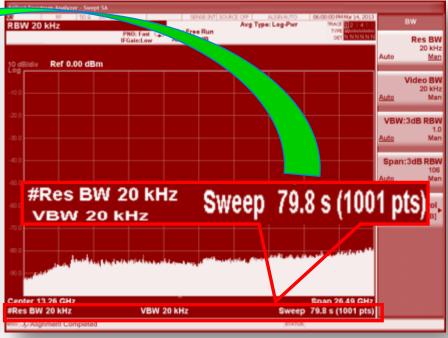
Agilent Technologies

Возможность быстрого свипирования (опция FS1) на РХА/МХА/ЕХА

Выигрыш скорости до 50 раз!

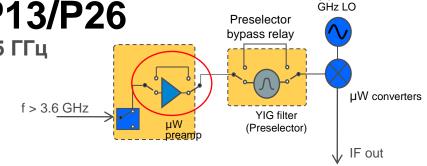
- Широкая полоса обзора поиск паразитных сигналов по всем частотам
- Узкие RBW исследование искажений низкого уровня
- Быстрое свипирование оперативное отслеживание искажений


"10 главных составляющих измерений – это скорость" – так заявляют заказчики


Теперь мы быстрее конкурента в 5 раз!

Примерно в 50 раз быстрее прошлых Р/М/ЕХА

P/M/EXA (с B40 или DP2, fw rev ≥A.13) Прошлые P/M/EXA (fw <A.13)


- Входит в <u>стандартную поставку</u> на Р/М/ЕХА с опцией В40 или DP2 (ПО≥ А.13)
- Измеренные результаты в 53 раза больше скорость (в полной полосе на 26.5 ГГц с 20 кГц RBW)
 - 1.5 секунды при быстром свипировании против 79.8 секунд без опции
- Апгрейд по ключу на M/EXA с опциями B40, DP2, или MPB, а также MXA с опциями B85/B1A/B1X. На BCEX PXA можно выполнить апгрейд

Опция для EXA N9010A-P13/P26

В ЕХА добавлен предусилитель на 13,6 и 26,5 ГГц

- Частотный диапазон:
 - 100 kHz 13.6 GHz
 - 100 kHz 26.5 GHz
- Апгрейд по лицензионному ключу
- Введено: <u>1 июня 2013</u>

Опция	Описание
N9010A/AK-P13	Preamp, 13.6 GHz
N9010A/AK -P26	Preamp, 26.5 GHz

8.3-14

Нововведения для МХА

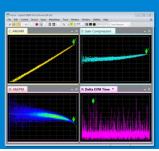
Пересмотр анализаторов среднего класса

- Лучшие показатели фазовых шумов в своем классе
- Самая широкая полоса анализа с несущими до частот 26.5 ГГц
- Единственная в отрасли возможность апгрейда до опции анализа в режиме реального времени (RTSA)

Нововведения для ЕХА

Баланс производительности

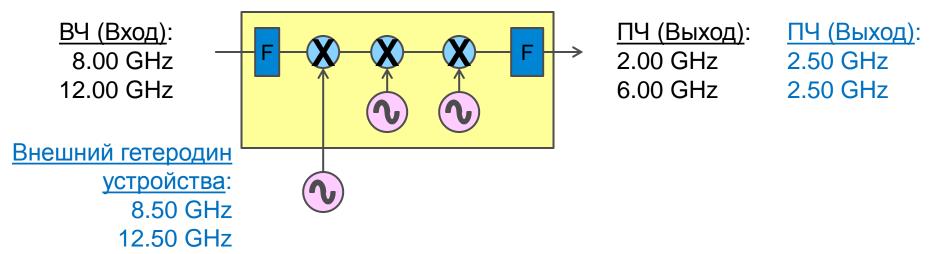
- Улучшены фазовые шумы и показатель ТОІ
- Повышена чувствительность в микроволновом диапазон за счет опций предусилителей до 13,6 или 26,5 ГГц
- Возможность быстрого свипирования при заказе опций В40, DP2, или MPB



Обновления приложений для анализаторов спектра

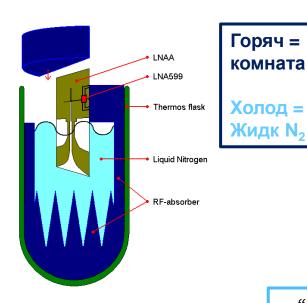
N9079A – измерение коэффициента шума

89600B – платформа VSA


Расширенный контроль гетеродина в N9069A (КШ)

- √Официальная поддержка <u>всех</u> типов ввода/вывода (GPIB, LAN, USB, USB-GPIB).
- ✓ Поддержка «smart» генераторов (т.е. можно "искать" генератор по GPIB).
- √Поддержка как внешнего гетеродина <u>исследуемого устройства</u>, так и <u>встраиваемого в систему</u> гетеродина. Каждый может функционировать и в верхней, и в нижней боковой полосе частот; быть как фиксированным, так и свипируемым (оба не могут быть одновременно свипируемыми)

Класс "Конвертер" для устройств в N9069A


✓ Новый тип исследуемого устройства «Конвертер» (в дополнение к Усилителю, Повышающему и Понижающему Преобразователям). Включает в себя многоступенчатые преобразователи любой частотной сетки, чтобы упростить детектирование ошибок.

- ■Пользователь задает старт-стоп по частоте <u>только для входа и</u> <u>выхода</u>; больше <u>нет</u> необходимости описывать для каждого каскада гетеродин, преобразователи и т.д.
- ■Одна ступень устройства может иметь гетеродин, упр. приложением и свипируемый
- ■Для однокаскадного устройства в ПО можно выбирать преобразователи

Измерения "вручную" в N9069A

- ✓ "Ручной" алгоритм измерений, когда состояние источника шума находится не под контролем ПО:
- а) Температурный контроль источника шума **медленный** (мех., термич.).
- b) Горячий и холодный источник *физич. разделены* и соединяются последовательно.
- с) Приемники радиотелескопов тестируются с антеннами и LNA совместно. Горячие и холодные стандарты находятся в открытом пространстве (пример солнце и ясное небо), изменяются посредством *наведения антенны*.
- d) Пользовательские источники шума когда не подходят норм. упр. сигналы

1	Normal Algorithm 1: Cal 2: Meas	Manual Algorithm 1: Cal 2: Meas
	For Each Freq	Prompt User to Set NS to Hot, <u>Pause</u>
	Switch NS to Hot	For Each Freq
	Measure Power A	Measure Power A
	Switch NS to Cold	Next Freq
	Measure Power B	Prompt User to Set NS to Cold, Pause
	Next Freq	For Each Freq
	Display Results, Repeat if Cont	Measure Power B
		Next Freq

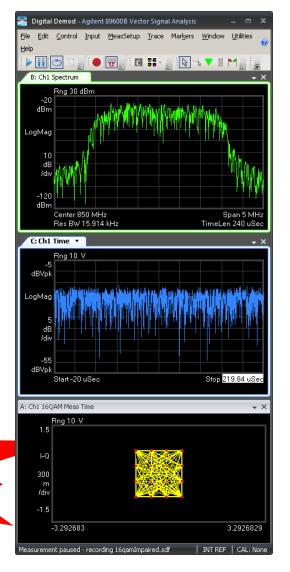
Display Results, **Pause** (Single)

■ "Ручной" алгорит – <u>Пауза</u>, чтобы пользователь сменил температуру и вставил значения <mark>Частоты</mark>

89600 ПО VSA – Agilent предлагает лучшее в

отрасли ПО для векторного анализа

Определение: Векторный анализатор сигналов (VSA) - любая платформа или ПО, разработанные для исследования спектра сигнала, модуляции и временных характеристик посредством анализа амплитуды и фазы сигнала


Не имеет равных по гибкости, глубине и ширине анализа.

- Поддержка >70 стандартов сигналов и типов модуляции
- Продвинутые средства отладки и контроля

 Работает с >30 типами платформ (встроенная ОС или ПК)

agilent.com/find/89600_trial

БЕСПЛАТНАЯ
30-дн
лицензия

Что нового в 89600В версии 17 & 17.2?

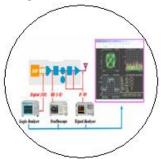
- Комплексные измерения по модели «стимул-отклик»
- Поддержка анализаторов спектра реального времени
- Улучшение WLA для LTE FDD
- Новый вид анализа Wi-SUN

Agilent 89600В – ПО векторного анализа сигналов Главное средство анализа и комплексное решение

Мобильная связь

- LTE (FDD &TDD)
- W-CDMA / HSPA+
- TD-SCDMA
- GSM / EDGE Evo
- CDMA 2000/1xEV-DO
- Польз. OFDM
- 4X4 MIMO

Беспроводное соединение

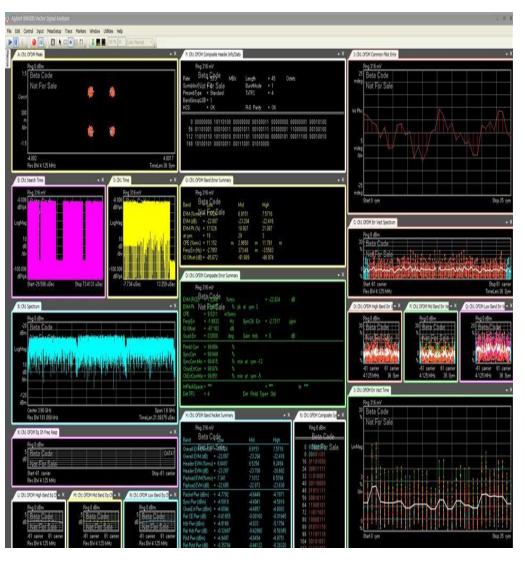

- WiMax
- WLAN (a/b/g/n/j)
- RFID
- UWB
- 4X4 MIMO

Авиакосмическая оборонная отрасли

- FSK, BPSK, QPSK
- QAM, StarQAM
- APSK
- · AM, FM, PM
- Польз. OFDM
- 4 канала

Общее применение

- Образование (89600BSP-ED1/-ED2)
- Системные интеграторы


Форматы сигналов: поддержка >70 типов модуляции и сигналов

Стандарты сотовой связи		
Opt BHG Opt BHH	LTE-Advanced TDD analysis LTE-Advanced FDD analysis	
Opt BHE Opt BHD	LTE TDD analysis (MIMO) LTE FDD analysis (MIMO)	
Opt B7T	cdma2000/1xEV-DV analysis	
Opt B7U	WCDMA/HSPA+ analysis (MIMO)	
Стандарті	ы беспроводных сетей	
Opt BHJ	802.11ac	
Opt B7Z	802.11n WLAN MIMO	
Opt B7R	802 a/b/g	
Opt B7Y	WiMax mobile (MIMO)	
Другие стандарты		
Opt BHB	MB-OFDM analysis	
Opt BHC	RFID analysis	
Opt BHA	TEDS	
	AM/FM/PM analysis	

Option AYA: разветвленный анализ модуляции		
	Custom APSK,FSK: 2 to 16 & GFSK / CPM	
	MSK (including GMSK) / BPSK	
	QPSK, OQPSK, DQPSK, pi/4 DQPSK	
Demodul ators	8PSK , D8PSK, 3pi/8 8PSK (EDGE),	
	pi/8 D8PSK	
	QAM: 16 to 1024, absolute encoding	
	QAM: 16 to 256, differential encoding per DVB std	
	Star QAM: 16, 32	
	APSK: 16, 16w/DVB, 32, 32w/DVB	
	VSB: 8, 16	
	Raised cosine, sq rt cosine, IS-95 compatible, Gaussian, EDGE, low pass, rectangular	
Filter types	User defined	
	Adaptive equalizer	
alpha/BT	Continuously adjustable: 0.05 to 10	
Single butto	n presets	
Cell	NADC, GSM, EDGE, EDGE E, CDMA (base), CDMA (mobile), CDPD, PDC, PHP(PHS)	
Wireless Net	Bluetooth, HyperLan1(HBR & LBR), Zigbee (868MHz, 915MHz, 2450MHz)	
Digital	DTV (8, 16)	
Video	DVB (16, 32, 64)	

89600В ПО VSA

НЕОГРАНИЧЕННЫЕ возможности по <u>трассам/маркерам</u>

Более разветвленный интерфейс

Неограниченное число трасс сигнала •Сигналы усложняются, следите за каждым аспектом – сегодня и завтра

Неограниченное число маркеров на трассе •Оцените качество сигналов с наибольшей детализацией

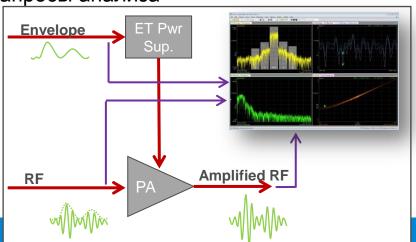
Развитые средства систематизации •Изучайте шаблоны изнутри

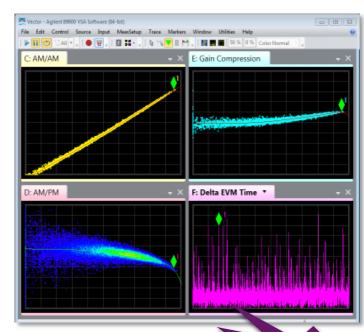
Произвольный выбор размера •Больше данных на экране

Произвольный выбор отсчетов
• "Измерить каждую трассу", сегодня
и завтра

Комплексные измерения по модели «стимул-отклик»

Новые типы отображения трасс – сравнение сигналов


 Измерения искажений (АМ/АМ, АМ/ФМ, компрессия усиления) на реалистичных сигналах

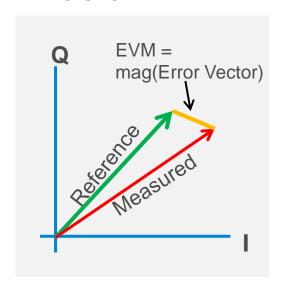

Автоматическая компенсация времени, амплитуды и фазы, даже между модулирующим и ВЧ-сигналом

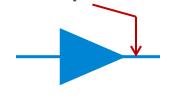
Простая настройка и анализ даже для огибающих

Гибкая поддержка оборудования для обработки сигналов

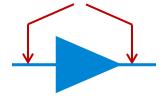
 Именно та конфигурация, которая подходит под бюджет и запросы анализа

Пользовательские приложения


- Измерения искажений усилителей мощности
- Трекинг огибающей
- Сравнение 2-х сигналов во временной области


Agilent Technologies

Комплексные измерения по модели «стимул-отклик»


- AM/AM = ампл(отклик(t)) vs. ампл(стимул(t))
- AM/ФМ = фаза(отклик(t)) vs. ампл(стимул(t))
- **Компрессия усиления** = отклик(t)/стимул(t) vs. ампл(стимул(t))
- Дифференциальный (∆, аддитивная величина) EVM:

Стандартн EVM

Дифференц EVM

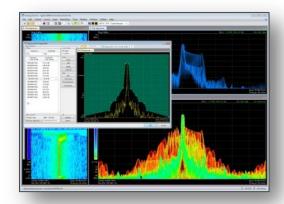
1-портовые измерения, расчет:

- vs. идеальн. форма сигнала
- только в точках с символами данных
- после фильтров baseband

2-портовые измерения, расчет:

- vs. входной сигнал
- в каждой точке волны
- без фильтров baseband

Пользователи могут характеризовать приборы с помощью комплексных модулированных сигналов — важно для широкополосных сигналов

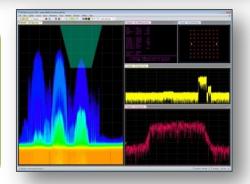

Поддержка анализаторов спектра реального времени

Поддержка новых МХА и РХА с опцией RTSA

 Позволяет осуществлять сбор сигналов при помощи платформ реального времени для более глубокого анализа и демодуляции

Триггер по частотной маске (FMT) доступен из ПО при подключении к MXA/PXA с RTSA

 Обеспечивается полная поддержка FMT для одиночных измерений или записи сигнала через ПО



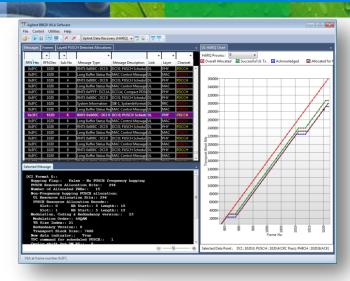
Приложения

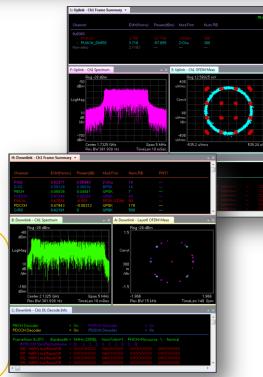
Расширенный анализ коротких сигналов в динамической среде

- Демодуляция и измерение EVM при интерференции сигналов
- Постпроцессинг и зуммирование сигналов
- Загрузка захваченного сигнала в генератор для тестирования как «стимул»

Улучшение WLA для LTE FDD

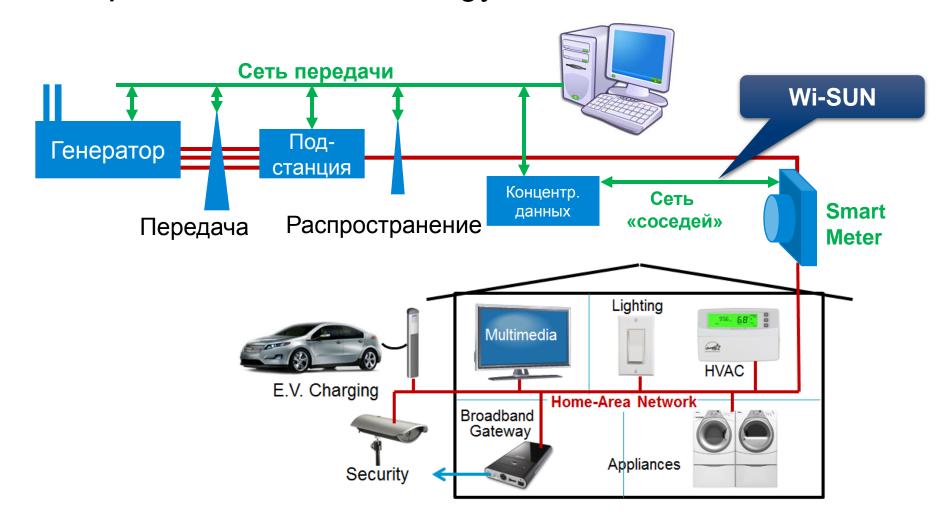
Одновременный анализ высокого и низкого уровня


- Полное понимание процессов взаимодействий по UE/eNB
- Для WLA доступны сводные диаграммы, динамически свзанные с измерениями VSA
- Отображение ключевых параметров пропускная способность, мощность сигнала, временные сдвиги и корреляция на физическом уровне


Подтвержденная применимость и встроенные демонстрации

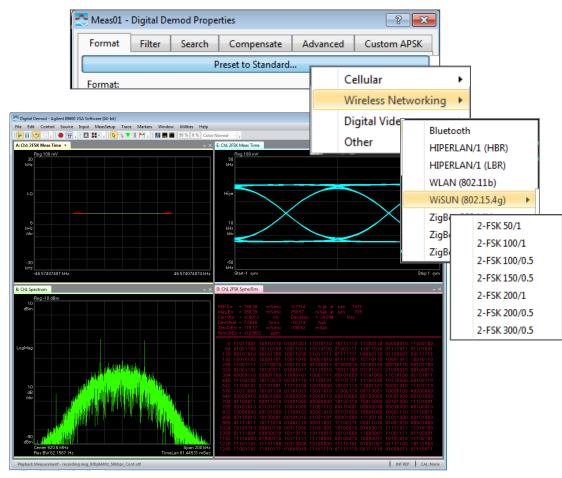
 Упрощает презентацию возможностей и изучение продукта заказчиками

Приложения


- Независимая верификация взаимодействия в ячейке типа UE/eNB
- Диагностика передачи данных и проблем соединений
- Декодирование сообщения (2/3) и корреляция на ВЧ-уровне

Обзор систем Smart Energy

Новый анализ – Wi-SUN Wireless Smart Utility Network Standard


Базируется на IEEE 802.15.4g, режим 2-FSK

Новые предустановки в опции AYA для Wi-SUN

Добавлены следующие результаты измерений:

- Ошибка перехода через ноль
- Ошибка смещения девиации
- Ошибка символьного счетчика

Подтверждено заказчиками

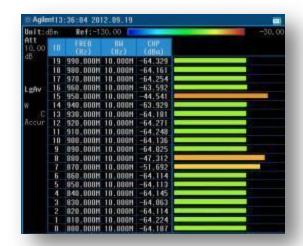
N9322C – базовый настольный анализатор спектра 9 кГц – 7 ГГц



При ближайшем рассмотрении...

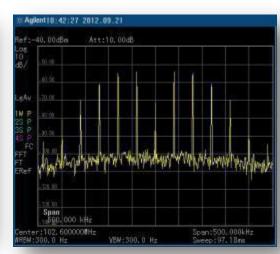
Практичная точность по доступной цене

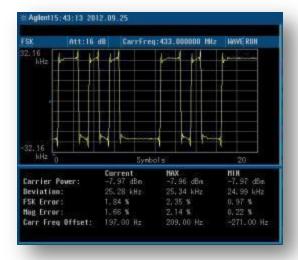
Ключевые спецификации:

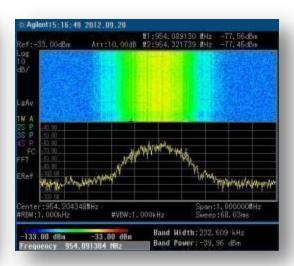

- Частотный диапазон: 9 kHz to 7 GHz;
- Абсолютная погр. изм. уровня: ±0.3 dB (ПУ off); ± 0.4 dB (ПУ on)
- Неравномерн. АЧХ (ПУ off): ± 0.7 dB (F< 3 GHz); 0.9 dB (F> 3 GHz)
- Средний уровень собств. шумов (ПУ on, 10 Hz RBW):
 - At 1 GHz: -152 dBm
 - At 4 GHz: -151 dBm
 - At 7 GHz: -144 dBm
- Полоса фильтров ПЧ: 10 Hz to 3 MHz
- Входной аттенюатор: 50 dB дипазон, шаг 1 dB
- TOI: +10 dBm
- Скорость свипирования: 2ms 1000s (span>100Hz); 6µs 1000s (span = 0 Hz)

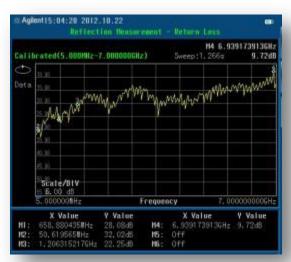
Общие характеристики:

- 5 ~ 45 °С − рабочая температура
- Номинальная потребляемая мощность 25 Вт
- Bec 7,6 кг
- Размер (H x W x D): 132.5 x 320 x 400 мм
- Калибровочный цикл 1 год


Добавлены важные преимущества при измерениях


Сканнер каналов


Планировщик задач

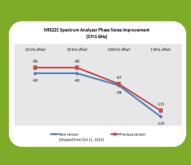

FM-демодуляция и анализ

FSK-демодуляция и анализ

Спектрограмма

(1-порт) Измерение обратных потерь

N9322C Новые возможности анализатора сигналов BSA


Доступны временные лицензии

- Запросите на Agilent ASM вебсайте с ноября, 2013
- Доступные опции: AMA, DMA, SCN, RM7, MNT, TMG, TPN
- Поддерживаются версиями ПО начиная с А.04.41

Обновление пользовательских клавиш

- Увеличено количество пользовательских клавиш с 7 до 18
- Обеспечивают быстрый доступ к наиболее часто используемым функциям
- Доступно с версии ПО А.04.41 и выше

Улучшение фазового шума

- Уменьшен на 1 дБ на отстройках 10 кГц, 100 кГц, на 4 дБ на отстройке1 МГц
- Доступно с версии ПО А.04.41 и выше

Обновление характеристик ЭМС приемника N9038A MXE

Новые возможности МХЕ

Расширенный частотный диапазон, увеличенная скорость, новый тип измерений.

- Измерения с расширенным частотным диапазоном до 44 ГГц
- Увеличение скорости измерений используя **сканирование во временной области (TDS)**
- Простой поиск сигналов с функцией Мониторинг спектра
- Готов для будущего CISPR 11 и использования **Функции учета** распределения аплитуд (APD)

МХЕ 44 ГГЦ

МХЕ 26 ГГЦ

МХЕ 8 ГГц

Сканирование во временной области (TDS)

Что это "Сканирование во временной области (TDS)"?

Новый способ сканирования частоты!

Последовательное сканирование, дискретное сканирование, и теперь сканирование во временной области

Сканирование на основе БПФ

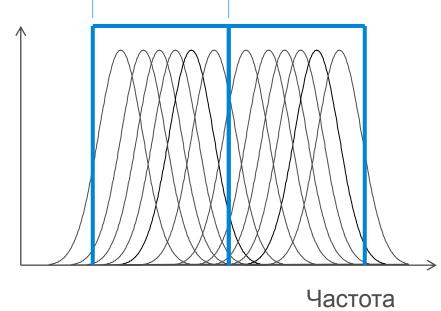
Используется 90% перекрытие (во времени) для гарантированных измерений амплитуды как непрерывных, так и импульсных сигналов.

Принято, но не требуется в рамках CISPR 16

Коммерческие тесты в автомобильной промышленности требуют сканирование во временной области

Как свипирование во временной области экономит время?

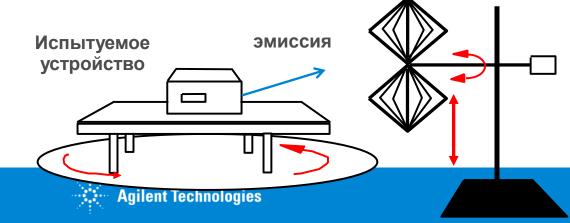
Амплитуда


Необходима задержка для каждого ФПЧ

Полоса пропускания ФПЧ приемника Амплитуда Частота

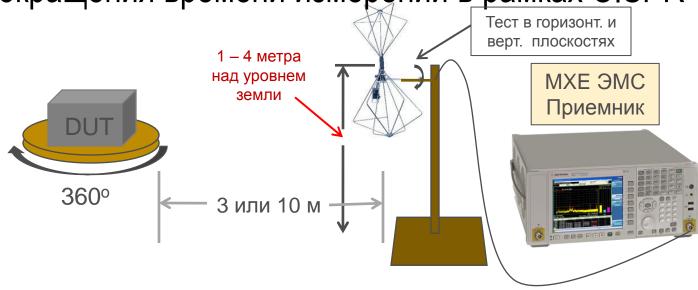
> Свипирование по частоте (или по шагам)

Необходима задержка ТОЛЬКО для полосы анализа <u>БПФ</u> (для набора ФПЧ)!!!



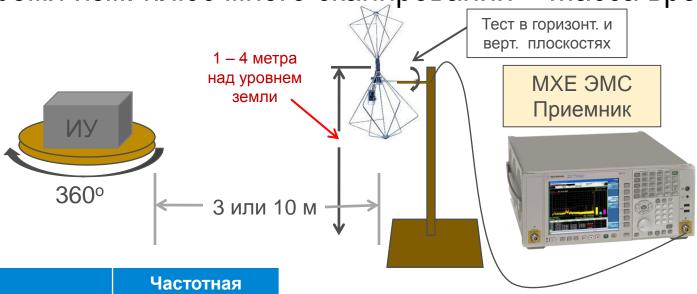
Сканирование по частоте во временной области

Метод измерения эмиссии в рамках CISPR


- 1. Быстрое предварит. сканирование для сбора информации по всем подозрительным сигналам
 - i. Скорость сканирования ограничена CISPR
 - іі. Ограничение скорости гарантирует захват
 - ііі. Используется пиковый детектор, но можно исп. SPR детектор
 - iv. MXE: "Scan"
- 2. Идентификация всех эмиссий выше заданного порога
 - i. MXE: "Search"
- 3. Выполнение итоговых измерений отдельных сигналов
 - i. Найдите максимум, затем произведите итоговое измерение используя соответствующий CISPR детектор: Quasi-Peak, EMI-Avg, RMS-Avg
 - ii. MXE: "Measure"

Преимущество

TDS здесь


Пример сокращения времени измерений в рамках CISPR

- 1. вращение ИУ на 360°, сканирование каждые 15° = **24 изм.**
- 2. тестироваине на 3-х высотах антенны (1 4 метра) х 3
- 3. Тест в горизонт. и верт. плоскостях <u>х 2</u> 144 изм.

Цель: идентифицировать максимумы и составить список подозрительных эмиссий для финальных измерений

Большое время изм. плюс много сканирований = Масса времени

	Частотная область
CISPR Диапазон	MXE
30МГц-1ГГц Пиковый детектор Выдержка 10 мс RBW = 120 кГц 3 точки на RBW	242 сек
150 кГц – 30 МГц Пиковый детектор 100 мс выдержка RBW = 9 кГц 2 точки на RBW	664 сек

144 сканирования

х ~250 сек/скан

10 часов

Без учета времени на позиционирование стола и антенны

Сканирование во временной области - значительное

Тест в горизонт. и

	Временная область
CISPR Диапазон	MXE
30МГц-1ГГц Пиковый детектор Выдержка 10 мс RBW = 120 кГц 3 точки на RBW	~12 сек
150 кГц – 30 МГц Пиковый детектор 100 мс выдержка RBW = 9 кГц 2 точки на RBW	~13 сек

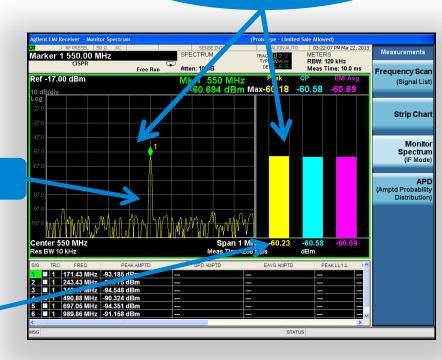
144 сканирования 12 x ~250 сек/скан

10 часов **29 минут**

Без учета времени на позиционирование стола и антенны

Спектральный мониторинг – Что это?

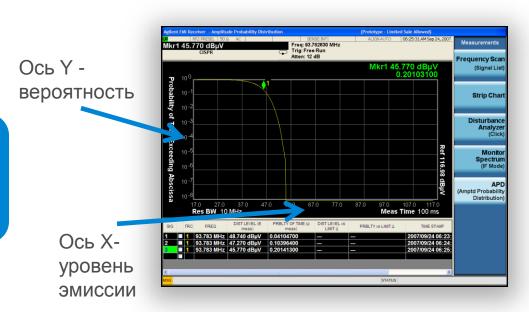
- •Одновременно отображает спектр и измерители
 - Измерители настроены на центральную частоту


Одновременное обновление

- Спектр БПФ (Фиксированные ФПЧ)
- Спектр в диапазоне обзора (span)
- •Инструмент диагностики

Спектр

- **<u>Не требуется</u>** никакими стандартами

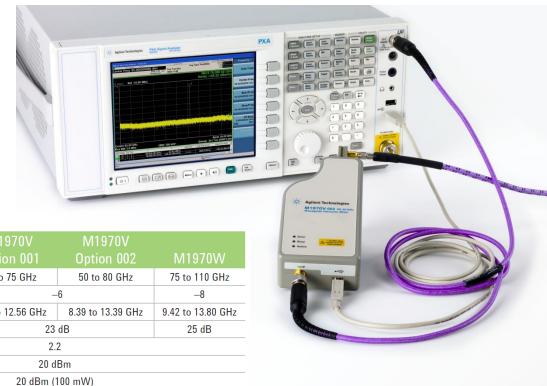

Измерители

Оценка распределения амплитуд Что это?

- •Новый тип измерения в рамках CISPR 11
- •Измерение вероятности распределения эмиссии превышающей определенный уровень
- •Очень близко к интегральной функции распределения CCDF

Поставляется в <u>стандартной</u> комплектации МХЕ

Расширения в мм диапазоне для формирования и анализа до 1ТГц



Смарт смесители Agilent серии M1970

USB соединение обеспечивает:

- Автоматич. идентификацию
- Номер гармоники
- Хар-ки преобразования
- Потери в цепи гетеродина

		M1970V	M1970V	
Specification	M1970E	Option 001	Option 002	M1970W
Frequency range	60 to 90 GHz	50 to 75 GHz	50 to 80 GHz	75 to 110 GHz
LO harmonic number ¹	-6/-8	-6		-8
LO input frequency range ²	9.42 to 12.56 GHz	8.39 to 12.56 GHz	8.39 to 13.39 GHz	9.42 to 13.80 GHz
Maximum conversion loss ³	27 dB	23 dB		25 dB
Calibration accuracy (nominal) ⁴	2.2			
Maximum LO power	20 dBm			
Maximum CW RF input level	20 dBm (100 mW)			
Maximum RF peak pulse power	24 dBm with < 1 μsec pulse (average power: + 20 dBm)			
Odd order mixing product suppression (nominal)	15 dB			
Gain compression level (< 1dB) (nominal)	–1 dBm			
Input SWR (nominal)	2.6			
Noise figure (nominal) ⁵	40 dB 36 dB			38 dB
System displayed average noise level (DANL) at 1 Hz resolution bandwidth $(nominal)^6$	–136 dBm	-140	dBm	–138 dBm

Позиционирование VDI и OML продуктов

Формирование сигналов:

E8257DVxx VDI Преобразователи частоты				
VDI Преимущества	Высокая вых. мощность (e.g. WR-05, 140 – 220 GHz: +4 dBm)	Более высокочастотные модели до 1.1 ТГц		
VDI Недостатки	Необходим внешний БП			
E8257DSxx OML Преобразователи				
OML Преимущества	Питание осуществляется с задней панели PSG	Некоторые модели имеют опциональный аттенюатор		
OML Недостатки	Низкая вых. мощность (e.g. WR-05, 140 – 220 GHz: -15 dBm)	500 ГГц максимум		

Позиционирование VDI и OML продуктов

Анализ сигналов:

N9029AVxx VDI Преобр			
VDI Преимущества	Меньше потери преобразования -> ниже DANL (e.g. WR-05 DANL, 140-220 GHz: -151 dBm/Hz)	Более высокочастотные модели до 1.1 ТГц	Двойное мспользование – стандартное и как преобразователь вниз
VDI Недостатки	Необходим внешний БП		
N9029AExx OML Внешн			
OML Преимущества	Не нужен внешний БП	Меньше размеры	Ниже цена
OML Недостатки	Выше потери преобразования (e.g. WR-05 DANL, 140-220 GHz: -95 dBm/Hz)	325 ГГц максимум	

Новые возможности в решениях GNSS - ГЛОНАСС

Глобальные Навигационные Спутниковые Системы

Global Positioning System (GPS)

GALILEO

- Используется США
- Запущена в работу в 1994 году
- Новый этап IIF и этап III запущены для формирования новых сигналов и новых сервисов

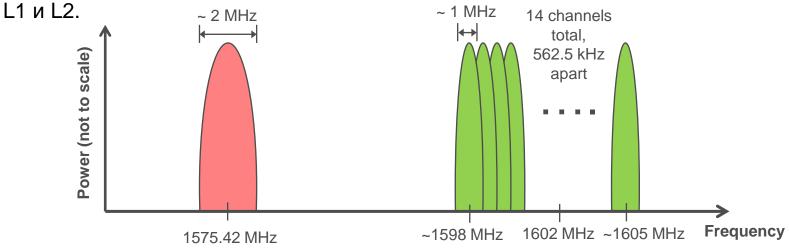
Galileo

- Совместный проект European Community и European Space Agency
- Экспериментальные спутники запущены в 2005 и 2008 годах
- 4 In-Orbit Validation спутников запущены в 2011 и 2012 годах
- Предварительный запуск в 2015 году
- Запуск полной группировки (30 спутников) намечен на 2020 год

GLObal **NA**vigation **S**atellite **S**ystem (ГЛОНАСС)

- Российская система запущена Советским Союзом в 1982 году
- Полностью запущена в работу в 2011 году
- Новые спутники ГЛОНАСС-К запущены для формирования новых сигналов

BeiDou (Compass)


- Разработан Китаем
- 16 спутников
- Введена в строй в декабре 2012 (азия и тихоокеанский регион)
- Полная группировка планируется в 2020 году
- Interface Control Document (ICD) для открытого доступа опубликован в декабре 2012

Технология ГЛОНАСС

- Настоящие спутники ГЛОНАСС-М транслируют как стандартный, так и ВТ код на одной из 14 частот, с одинаковым PRN кодом: система с частотным разделением каналов FDMA
 - L1 передаются вокруг 1602 МГц, 562.5 кГц отдельно (~1598-1605 МГц)
 - L2 передаются вокруг 1246 MHz, 437.5 kHz отдельно (~1242-1252 МГц)

• Новые спутники GLONASS-К будут также транслировать CDMA сигналы подобно GPS и Galileo: те же частоты, другие PRN коды на каждый спутник. Основные сигналы будут в диапазоне L3 на 1202.025 МГц. CDMA сигналы также разрабатываются для диапазонов

GPS L1 C/A Signal: All satellites transmit at same frequency using different PRN codes

GLONASS L1 C/A Signal (FDMA): Satellites transmit at different frequencies around 1602 MHz using same PRN code

Расширение национальных систем

Satellite Based Augmentation Systems (SBAS)

Геостационарные спутники транслируют ионосферные, временные и коррекции для эфемерид Provide increased positioning accuracy.

Северная Америка:

Wide Area
Augmentation System
(WAAS)

Индия:

GPS and GEO Augmented Navigation (**GAGAN**)

Индия: Indian Regional Navigation Satellite System (IRNSS)* – 1st of 7 satellites launched July 2013

Европа:

European Geostationary Overlay Service (**EGNOS**)

Россия:

System for Differential Correction And Monitoring (**SDCM**)*

Япония:

Multifunctional Satellite Based Augmentation Satellite System (MSAS)

Япония: Quazi Zenith Satellite System (**QZSS**)* – 1st of 7 satellites launched Sept. 2010, system operation in early 2018

Regional Navigation Satellite Systems (RNSS)

Provide improved GNSS signal availability/coverage and positioning accuracy over limited geographical areas.

*System is still in deployment phase

Сравнение навигационных систем

	GPS L1 C/A	GLONASS L1	Galileo E1 OS	Beidou 2 (Compass)	QZSS	SBAS
Satellites	24 minimum,	24 minimum,	24 minimum,	35 total: 5 GEO, 27	7 planned, 1	2 of 5 WAAS operational,
	32 current	31 current	4 current	MEO, 3 IGSO	operational	4 EGNOS, 2 MSAS
Organization	USA	Russia	Europe	China	Japan (Augmentation system)	USA, Europe, Japan, India. (Augmentation systems)
Orbit	20,200 km	19,100 km	23,222 km	21,500 km, 36,000 km	35,786 km	35,786 km
Orbital Period	~ 12 Hours	~ 11.2 Hours	~ 14 Hours	~ 12 Hours	~ 24 Hrs	~ 24 Hrs
Frequency	L1: 1575.42 MHz L2: 1227.60 MHz	L1: 1602.00 MHz +- 7 channels of 0.5625 MHz	E1: 1575.42 MHz	B1: 1561.098 MHz	L1: 1575.42 MHz	L1: 1575.42 MHz
Signal Format	CDMA, BPSK	FDMA, BPSK	CDMA, MBOC	CDMA, BPSK	CDMA, BPSK	CDMA, BPSK
Initial Operating Capability	1994	Soviet Union system in 1995, current system in Oct. 2011	Initial limited service 2014, full operation 2020	Regional service Dec. 2011, full system in 2020. 16 satellites launched.	1 satellite transmitting, full system available early 2018	WAAS – 2003 EGNOS – 2009 MSAS – 2007 GAGAN - 2014
Design Accuracy	10-20 meters	20-30 meters	8-17 meters	7-16 meters	10-20 meters	1-3 meters
Data Rate	50 bits/s	50 bits/s	250 bits/s	50 bits/s, 500 bits/s	50 bits/s, 25 bits/s	250 bits/s
PRN Code Length (bits)	1023	511	4092	2046	1023	1023
Chip Rate	1.023 MHz	0.511 MHz	1.023 MHz	2.046 MHz	1.023 MHz	1.023 MHz
Navigation Message Structure	Frames, subframes, check bits	Superframes, frames, strings, Check bits	R2 Convolutional FEC	Not publicly disclosed	Frames, subframes, Check bits	CNAV, R2 Convolutional FEC

Варианты формирования множества спутников

Запись и воспроизведение

- + Захват реальных ВЧ сигналов
- + Дешевле других решений

- Тестирование только доступных сегодня сигналов
- Неизвестно, что содержит сигнал
- Нет управления отдельными спутниками
- Нельзя модифицировать сигнал
- Ограниченная длина

Формирование генераторами произвольной формы

- + Управление сигналом
- + Возможность сформировать будущие сигналы
- + Дешевле реального времени
- Ограниченная памятью длина
- Одновременно разные стандарты требуют больше полосу и память
- Фаилы имеют конечную длину
- Изменения возможны только с созданием нового файла

Формирование в реальном времени

- + Управление сигналами в реальном времени
- + Очень гибкое решение
- + Формироваине будущих сигналов
- + Не ограничены встроенной памятью

- Более дорогое решение

N7609B Signal Studio для GNSS:

Формирование множества спутников в реальном времени

Формироваине множества спутников в реальном времени разных систем: GPS, ГЛОНАСС, GALILEO, Beidou для проверки приемников.

Эмуляция до 15 видимых спутников каждой группировки, 40 каналов доступно для спутников и многолучевого распространения для GPS, GLONASS и/или Beidou

Дополнительно 16 каналов доступно для спутников Galileo многолучевости

Изменения в реальном времени, мощность, ошибка псевдодальности и многолучевости

Поддерживаются статические и динамические сценарии

Формирование до 24 часов на основе файлов сцериев, или воспроизведение в течение 7 дней.

Добавление АБГШ (требуется опция АБГШ)

Две возможных конфигурации для N7609B

For Real-time Signal Generation

Configure signal parameters and generate scenario data in N7609B Signal Studio running on external PC

Download data to X-series signal generator to configure FPGA and start real-time signal generation

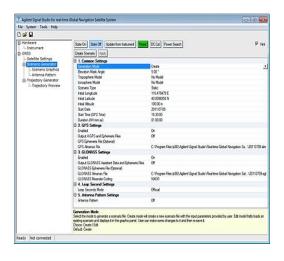
PC not required to play back scenarios that have been downloaded into EXG/MXG

N5172B EXG or N5182B MXG

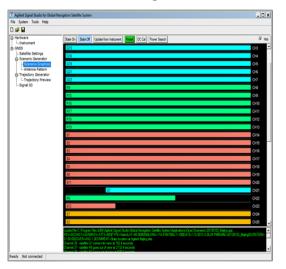
N7609B Signal Studio runs in the PXB to generate scenario data and PXB creates real-time baseband GNSS signals

Vector EXG, MXG or ESG used as RF upconverter

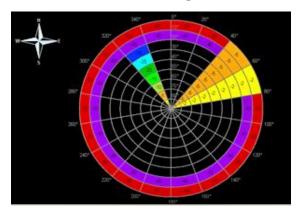
No baseband generator required for EXG/MXG

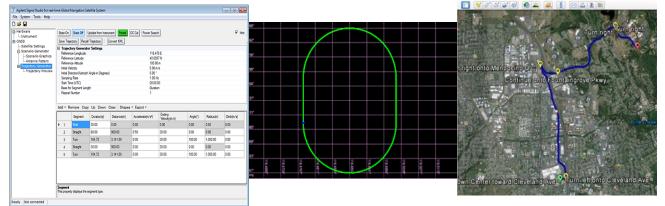

N5106A PXB Baseband Generator and Channel Emulator

N5172B EXG, N5182A/B MXG, or E4438C ESG



Формирование произвольных сценариев


Create custom scenarios for any location, date, and time to model stationary or moving receivers.


Scenario Graphics display shows each channel during the scenario.

Configure and apply an antenna model to the satellite signals

Trajectory generator creates
NMEA GGA message files
describing receiver's path for
moving receiver scenarios
from user description, or
imports Google Maps KML file

N7609B Signal Studio для GNSS: Формирование одиночных спутников

- Basic mode option EFP for simple receiver verification tests such as receiver sensitivity, acquisition and tracking (no location fix)
- Creates waveform files simulating single satellite for GPS, GLONASS, Galileo, Beidou, satellite-based augmentation systems (SBAS), or Japan's Quazi-Zenith Satellite System (QZSS)
- User selects SV ID (or frequency channel for GLONASS) and Doppler frequency
- Waveform files may be used with multiple instrument platforms:
 - Vector signal generators:
 - E4438C ESG
 - N5172B EXG
 - N5182A/B MXG
 - E8267D PSG
 - E6607 EXT and E6630A wireless test sets
 - N5106A PXB.

Новые генераторы сигналов МХG N5173B/N5183B

N5183B UW ANALOG

N5173B UW ANALOG

Новые генераторы сигналов 13 / 20 / 32 / 40 GHz

the Pure and Precise MXG N5183B

MXG N5183A

the Cost-Effective EXG N5173B

the Metrology-grade PSG E8257D/E8267D PSG E8257D/E8267D

BEST IN CLASS PERFORMANCE

FLEXIBLE INTEGRATED
FUNCTIONALITY

LOWEST COST OF OWNERSHIP

Price

Delivering a Range of Performance - Three models available

PSG METROLOGY-GRADE MXG PURE & COMPACT EXG COST EFFECTIVE

PSG vs. MXG vs. EXG ()=Typical

	PSG	MXG	EXG
Phase Noise@ 10 GHz , 20 kHz offset	-120 dBc/Hz	-119 dBc/Hz	-97 dBc/Hz
Phase Noise@ 10 GHz , 10 Hz offset	-72 dBc/Hz	-63 dBc/Hz	(-57) dBc/Hz
HARMONICS @ 10 GHz/1 GHz	-55 /-55 dBc	-55/-33 dBc	-55/-33 dBc
Power @ 20 GHz	+23 dBm	+19 dBm	+19 dBm
Frequency Switching Speed	(9 ms)	900 us	900 us
RAMP SWEEP	Yes	No	No

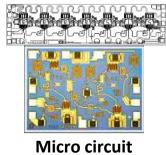
COMMON X-SERIES CAPABILITIES

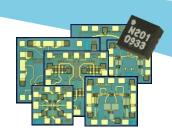
- Best in class performance
- Flexible Integrated functionality
- Low cost of ownership

Key Specifications Comparison

Specification	MXG-B N5183B	PSG E8257D	EXG N5173B	MXG-A N5183A
Frequency range 1,2	9 kHz to 40 GHz	100 kHz to 67 (70) GHz	9 kHz to 40 GHz	100 kHz to 40 GHz
Freq Stability (ppm/day)	+/- 5 x 10 ⁻¹⁰ nom	+/- 2.5 x 10 ⁻¹⁰ nom	+/- 5 x 10 ⁻¹⁰ nom	1 ppm/year nom
Pedestal Phase noise (dBc/Hz) 10GHz@20k/10k offset	STD: -113 (-117) UNY: -119 (-126)	STD: -110 (-113) UNX: -110 (-114) UNY: -120 (-126)	-97 (-101)	-95 (-98)
Close In Phase noise (dBc/Hz) 10GHz@10Hz offset	STD: (-80) UNY: -63	STD: (-74) UNX: -65 UNY: -72	(-57)	(-37)
Phase noise <250 MHz (dBc/Hz) 100 MHz@20k offset	STD: -129 (-134) UNY: -138 (-142)	STD: -130 (-134) UNX: -140 (-145) UNY: -150 (-157)	-115 (-120)	-113 (-116)
Non-harmonics (dBc) 10 GHz >10KHz offset	STD: -69 UNY:-74 (-80)	STD/UNX: -62 (-70) UNY: -70	- 60	-41 (-57)
Harmonics (dBc) 10 GHz	-55 dBc	-55 dB	-55 dBc	-54 dBc
Broadband noise 10 GHz @10MHz offset (dBc/Hz)	-149	-160	-149	-147
Max Power @ 20 GHz (dBm) with step attenuator	STD:+15 1EA: +19 dBm	STD: +15 (+19) 1EA: +19 (+22) 521: +23 (+26)	STD: +15 1EA: +19	STD:+11 1EA: +19
FM Deviation @ 20GHz	64 MHz	32 MHz	160 MHz	160 MHz
Max AM depth (exp)	50 dB	60 dB	50 dB	20 dB
Min Pulse width	20 ns	20 ns	20 ns	20 ns
Freq. Switch (list mode)	<900 us	9 ms to 24 ms	<900 us	<900 us
Ramp Sweep	No	Yes	No	No

^{() =} Typical or measured data




¹⁾ MXG and EXG include 13, 20, 31.8 and 40 GHz frequency options.

²⁾ PSG E8257D includes 20, 31.8, 40, 50 and 67 GHz options

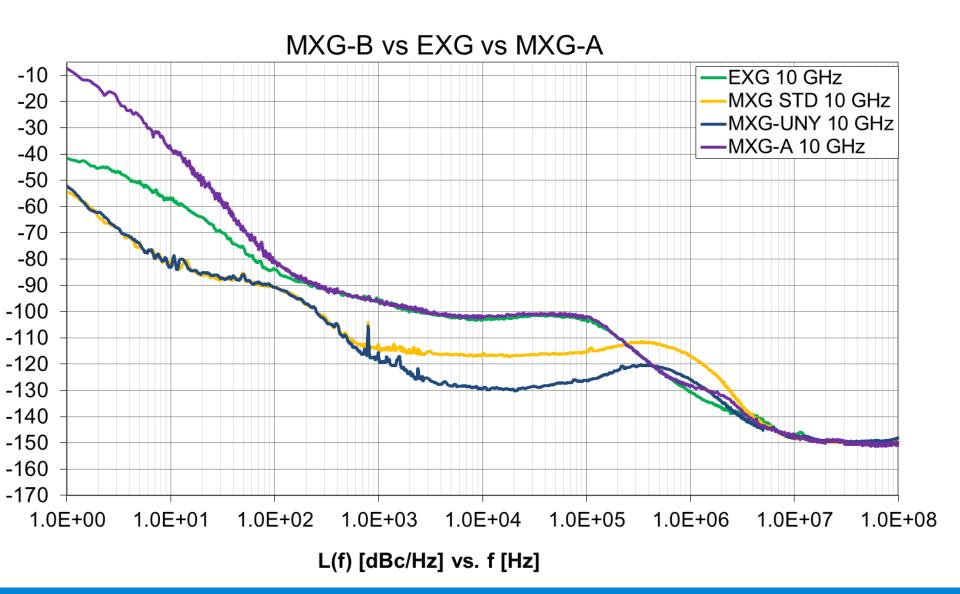
Innovation in Signal Generation Proprietary Agilent Technology

Micro circuit amp & filter module

Low noise VCO

Low noise

Triple-loop synthesizer



- Low noise VCO→ Low phase noise & fast switching
- Low noise ALC→ low AM noise
- Triple-Loop Synthesizer → low Phase noise & spurs

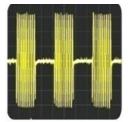
Agilent uW signal generators

Phase Noise 10GHz

Flexible Signal Simulation

Simulate signals

- Radar pulse patterns
- Analog communications
- Moving antenna beams
- Mixed modulations

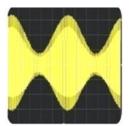


MXG and EXG

- Option UNW: Narrow Pulse
- Option UNT: Analog Mod (AM, FM, ФМ)
- Option 303: Multifunction

Generator

Modulation



64 rad (MXG)

160 rad (EXG)

Pulse	FM	ФМ	AIVI

Max. Rate: DC to 7MHz

1 / 10 MHz

Max Deviation / 120MHz (MXG)
Depth: 320 MHz(EXG)

320 WH 12

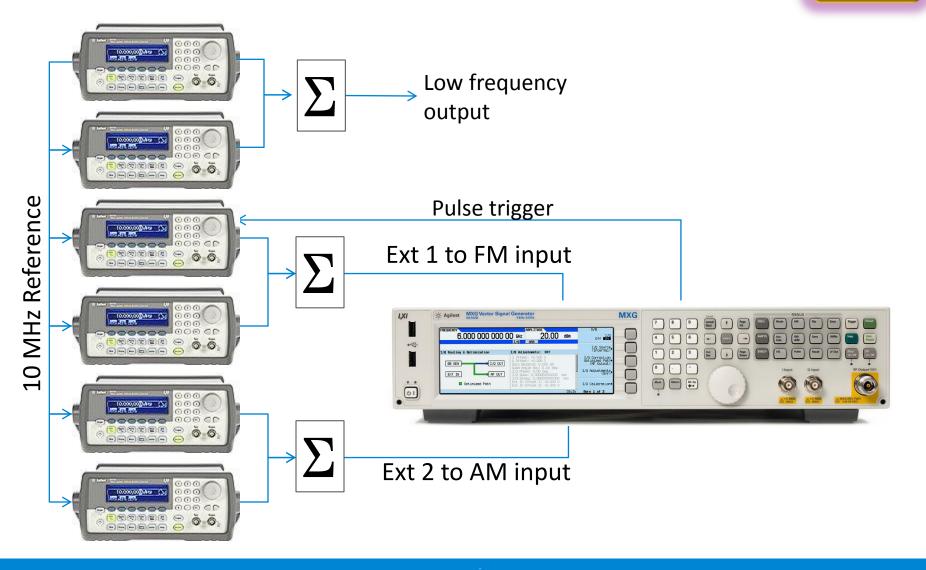
Pulse Min Width: 20 ns (UNW)

Pulse Rise/Fall: 6 ns (typ)

Pulse

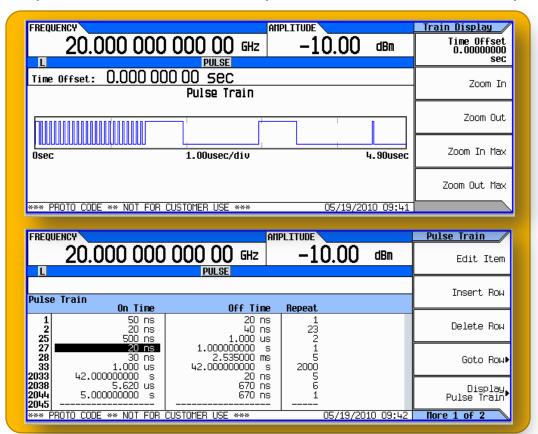
Max. Repetition 10 MHz

Frequency:


Pulse On/Off: > 80 dB

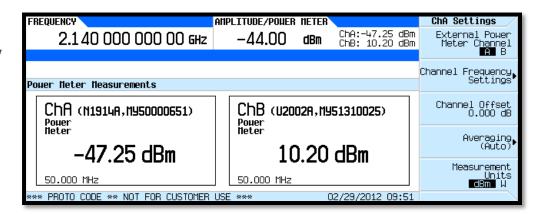
100 kHz O MHz (Useable to 1 MHz)

> 100% > 50 dB


New Multifunction Generator – Option 303

Pulse Train Option 320

- ✓ Define "On Time", "Off Time", and "Repeat" for up to 2047 pulses from the front panel.
- View pulse train pattern on front panel display
- Import CSV/ASCII files. Export Comma, Semicolin, Space, or Tab separated text files

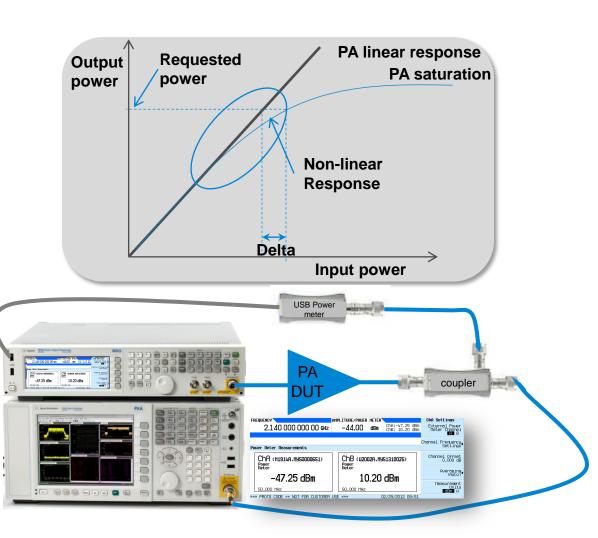


USB Power Sensor Connectivity

Support all Agilent USB U2000 series

- Save rack space
- Use X-series as power meter display
- Automate via SCPI
- Up to 4 Agilent USB power sensors can be connected. (two on display at one time)

USB power sensor connectivity & display


Power Servo (External Levelling)

What?:

 External USB power sensor leveling of DUT output.

What is the value?:

 Convenient bench top feature saves time and effort by enabling source to auto tune non-linear amplifier gain with power meter accuracy before making power sensitive measurements.

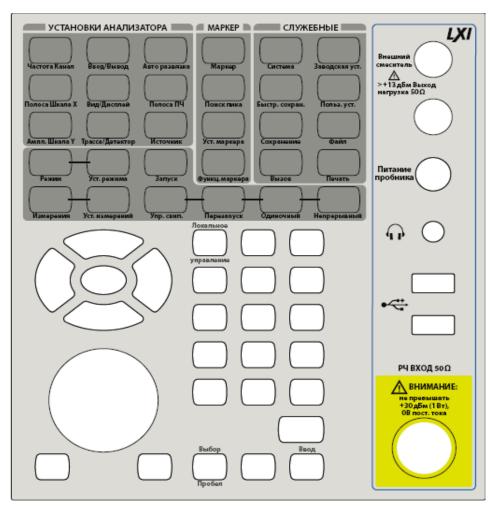
The Lowest Cost of Ownership

Cost Savings	DESCRIPTION
CALIBRATION INTERVAL	• 3 YEARS
MAXIMIZE UPTIME	• TARGET MTBF OF MXG-A
MINIMIZE DOWNTIME	 SELF SERVICE DIAGNOSTICS & WARRANTY PARTS DIRECT LESS THAN 3 HOURS TO REPLACE ANY PART LESS THAN 6 HOURS FOR POST-REPAIR CALIBRATION
LOW COST PARTS & LABOR	 REFURBISHED EXCHANGE PROGRAM FAST POST-REPAIR CALIBRATION STANDARD 3 YEAR WARRANTY

Thank you!

X-Series Key Specifications Comparison

Specifications	PXA N9030A	MXA N9020A	EXA N9010A	CXA N9000A	MXE N9038A
Frequency range (min-max)	3 Hz – 50 GHz	10 Hz – 26.5 GHz	10 Hz – 44 GHz	9 kHz – 26.5 GHz	20 Hz – 26.5 GHz
Analysis bandwidth Standard RF Optional RF Optional baseband	10 MHz 25, 40, 85, 160 MHz 25, 40 MHz	25 MHz 40, 85, 125, 160 MHz 40 MHz	25 MHz 40 MHz	10 MHz 25 MHz	10 MHz 25 MHz
Overall amplitude accuracy (95%)	±0.19 dB	±0.23 dB	±0.27 dB	±0.50 dB	±0.75 dB
Displayed average noise level (DANL) @ 1 GHz @ 4 GHz	-172 dBm -172 dBm	-166 dBm -164 dBm	-163 dBm -165 dBm ¹ -162 dBm	-163 dBm -147 dBm ² -159 dBm	-167 dBm -172 dBm
Third order intercept (TOI) @ 1 GHz	22 dBm	20 dBm	18 dBm / 19 dBm ¹	17 dBm / 15 dBm ²	15 dBm
Phase noise @ 1 GHz 10 kHz offset 1 MHz offset	-132 dBc/Hz -146 dBc/Hz	-114 dBc/Hz -136 dBc/Hz	-105 dBc/Hz -106 dBc/Hz ¹ -137 dBc/Hz	-102 dBc/Hz -121 dBc/Hz	-106 dBc/Hz -137 dBc/Hz
Dynamic range, max third order at 1 GHz	119 dB	116 dB	112 dB 116 dB ¹	111 dB	112 dB
Standard attenuator range/step	70 dB / 2 dB	70 dB / 2 dB	60 dB / 10 dB	50 dB / 10 dB	70 dB / 2 dB


- 1) For N9010A EXA Option 532 or 544 frequencies only.
- 2) For N9000A CXA Option 513 or 526 frequencies only.

How to get Russian UI localization?

- With new P/MXA
 - Order Option N90x0A-AKT (no extra charge) including
 - A "Get Started Guide" Russian localization
 - An overlay for front panel (see right, user to put on)
 - Russian UI localization (for softkeys) license key enabled
- With existing P/MXA
 - Order Option N90x0AK-AKT (nominal charge: ~\$160) to get the above items
 - User to enable the license for Russian UI localization

FW rev ≥A.13.00 required

A Russian overlay to stick on the front panel